Epoxy Resin Cure. I. Fluorine-19 NMR of Boron Trifluoride Monoethylamine and Fluoroboric Acid

ROBERT E. SMITH, FRED N. LARSEN, and CHARLES L. LONG, The Bendix Corporation, Kansas City, Missouri 64141*

Synopsis

Fluorine-19 NMR is used to examine the role of boron trifluoride monoethylamine (BF₃-MEA) in epoxy resin cure. Spectra were first recorded in a variety of solvents suitable for dissolving different epoxy resins. All spectra contained a peak due to fluoroboric acid. Spectra of BF₃-MEA in orthodichlorobenzene were then recorded at elevated temperatures. The floroboric acid peak area increased, indicating that the BF₃-MEA was being hydrolyzed. Results indicate that, at temperatures above 100°C, BF₃-MEA is completely hydrolyzed within 5 min to fluoroboric acid.

INTRODUCTION

Boron trifluoride monoethylamine (BF₃-MEA) is important in industry as an additive to epoxy resins. Various reports have identified BF₃-MEA as either a catalyst, accelerator, or crosslinking agent.⁽¹⁻⁷⁾ These reports were based primarily on studies with simplified model systems. Instead of observing the BF₃-MEA directly, inferences were drawn based on the wellknown chemical properties of boron trifluoride.⁸ Because boron trifluoride is a well-known catalyst for a number of reactions, it is often assumed that BF₃-MEA must also be a catalyst for the curing of epoxy resins. Such an assumption is dangerous without experimental evidence. Perhaps the best experimental technique for observing BF₃-MEA is fluorine-19 NMR. The BF₃-MEA is usually present in 0.05–1% of the total weight of the epoxy prepolymer. Most common spectroscopic techniques will not distinguish BF₃-MEA from the large excess of epoxy prepolymer. Fluorine-19 NMR will observe only fluorine-containing molecules, thus eliminating the epoxy prepolymers (which contain no fluorine).

Before BF_3 -MEA is studied in an epoxy resin matrix, it is important to describe fully its fluorine-19 NMR spectrum without any other substances present. The present study reports the fluorine-19 NMR spectra of BF_3 -MEA in a variety of solvents and at different temperatures. All commercially available sources of BF_3 -MEA were found to contain at least 5% fluoroboric acid (HBF₄). Since HBF₄ can also catalyze a number of reactions,⁽⁸⁾ its fluorine-19 NMR spectrum also is reported.

The most probable source of HBF_4 is hydrolysis of BF_3 -MEA. To better understand the NMR spectrum of BF_3 -MEA, it is necessary to investigate

* Operated for the U.S. Department of Energy by The Bendix Corporation, Kansas City Division, under Contract No. DE-AC04-76-DP00613.

Journal of Applied Polymer Science, Vol. 29, 3697–3711 (1984) Not subject to copyright within the United States Published by John Wiley & Sons, Inc. CCC 0021-8995/84/123697-15\$04.00 this hydrolysis. Previous workers have shown that both boron trifluoride (BF_3) and HBF_4 undergo hydrolysis.⁹⁻¹¹

The hydrolysis of BF_3 -MEA has never been investigated. Fluorine-19 NMR is ideally suited for such hydrolysis studies because hydrolysis products can be observed directly. Previously, only HBF₄ and HBF₃OH were observed directly, although other hydrolysis products were suspected.⁹⁻¹¹ Since hydrolysis of BF₃-MEA might affect its shelf life and/or catalytic properties, fluorine-19 NMR was chosen to study its hydrolysis.

Both temperature and water concentration should affect the rate of hydrolysis. Because epoxy resins containing BF_3 -MEA are cured at elevated temperatures (120–180°C), a deuterated solvent with a high boiling point is needed. Thus, deuterated 1,2-dichlorobenzene (also known as d₄-orthodichlorobenzene or d₄-ODCB) was chosen.

This report describes the fluorine-19 NMR spectra of BF_3 -MEA and HBF_4 at room temperature in a number of deuterated solvents. The hydrolysis of BF_3 -MEA and HBF_4 are also described. Results show clearly that, at temperatures above 80°C, BF_3 -MEA is rapidly hydrolyzed to HBF_4 (and other hydrolysis products). At the temperatures which epoxy resins are cured, the rate of hydrolysis of BF_3 -MEA to HBF_4 is much faster than the rate of epoxy cure. Thus, it is proposed the BF_3 -MEA is not a catalyst in such systems, but instead HBF_4 and/or other hydrolysis products serve as catalysts.

EXPERIMENTAL

Fluorine-19 NMR spectra were recorded on a Varian FT80-A NMR at a frequency of 74.832 MHz. The following spectral parameters were used: Sweep width was 4000 Hz, pulse width was 13 μ s (90° flip angle), pulse delay was 10 s, acquisition time was 2.047 s, and 16,384 data points were collected. Deuterated solvents were used for field lock in every case. With the exception of spectra recorded in D₂O, hexafluorobenzene was added as an internal standard. All chemical shifts were assigned based on -163 ppm for hexafluorobenzene.¹² Negative chemical shifts are upfield (more shield-ed) from CFCl₃, which is usually taken as 0 ppm.^{13,14}

RESULTS AND DISCUSSION

The NMR analysis of BF_3 -MEA can be divided into three parts. In the first part, the spectra of BF_3 -MEA in different solvents is compared. The peaks present in each spectrum are identified. In the second part, one of these peaks, the one due to HBF_4 , is examined more closely. The chemical shift of the HBF_4 peak is shown to depend on the acidity of the sample matrix. The relative size of the HBF_4 peak indicates the degree of hydrolysis of the BF_3 -MEA. In the third part, the hydrolysis of BF_3 -MEA is reported. The effects of temperature and time on the hydrolysis in a 1,2-dichlorobenzene solvent are examined. Finally the hydrolysis of BF_3 -MEA in D_2O is described.

Spectra in Different Solvents

Different epoxy resins are soluble in different solvents. As a result, it is useful to compare the fluorine-19 NMR spectra of BF_3 -MEA in a variety of these solvents.

BF3-MEA is very soluble in acetone, dimethylsulfoxide (DMSO), and methanol, and slightly soluble in d_4 -ODCB. When fresh BF₃-MEA is dissolved in any of the above deuterated solvents, three sets of peaks appear [Fig. 1 (a)–(1d)]. The two largest peaks are caused by BF_3 -MEA and HBF_4 . As reported previously for BF₃,^{15,16} there is spin-spin coupling between ¹¹B and ¹⁹F, making the BF₃ peak a quartet. The same quartet is seen for BF₃-MEA. The ¹¹B–¹⁹F coupling constants are large enough to make the quartet clearly resolved. The ¹¹B-¹⁹F coupling constants for HBF₄ are so small that the HBF₄ appears as a pseudosinglet in these spectra. Previously, the fluorine-19 NMR of aqueous BF₄ was reported to be a quartet.¹⁷ If the NMR is carefully tuned, the spectrum of HBF_4 in D_2O can be resolved into the expected quartet. The fluorine-19 spectrum of BF₃-MEA in D₂O is shown in Figure 2(a). The HBF₄ overlaps the BF₃-MEA. When the scale is greatly expanded, the HBF₄ shows up clearly as two overlapping quartets. There is an additional ¹H-¹⁹F coupling because of the proton in HBF₄ [Fig. 2(b)]. The ${}^{11}B-{}^{19}F$ coupling constant in HBF₄ is 1.2 Hz. It should be noted that the chemical shift scale in Figures 2(a) and 2(b) is based on 0 ppm (or 0 Hz) for the center of the BF_3 -MEA. Since hexafluorobenzene is not soluble in D_2O_1 , it could not be added as an internal standard.

Figures 1 and 2 show a definite solvent effect on the chemical shifts of BF_3 -MEA and HBF_4 . This effect is summarized in Table I.

The third peak that appears in each spectrum is a quartet. The chemical shift of this quartet varies considerably in different solvents. This small quartet in D_2O is caused by HBF₃OH. (The acidic proton of HBF₃OH rapidly exchanges with the D_2O so that DBF_3OH is actually being observed.) This interpretation is based on a previous report on the hydrolysis of BF_3 which clearly showed HBF₄ and HBF₃OH to be hydrolysis products.¹⁰ If a chemical shift of -150.39 ppm was arbitrarily assigned to the BF₃-MEA in D₂O, the chemical shift of the downfield quartet becomes -143.27 ppm. In d₆-acetone, this downfield quartet has a chemical shift of -143.18 ppm (BF₃-MEA is -150.39 ppm), and in d₄-ODCB it is at -143.8 ppm (BF₃-MEA is -151.60 ppm). Thus, the small downfield quartet in d₆-acetone is also probably HBF₃OH (actually DBF₃OH or even maybe DBF₃OD). However, the chemical shift of the small quartet in deuterated methanol is -152.68 ppm and is -140.34 ppm in deuterated DMSO. These differences are too large to be caused by solvent effects (compared to solvent effects on BF3-MEA in Table I). Thus, methanol and DMSO must be capable of displacing the water in HBF₃OH to form BF₃-CH₃OH or BF₃-DMSO. A summary of chemical shift data on these small quartets is given in Table II.

These data can be interpreted based on the previous report on hydrolysis of BF_{3} .¹⁰ In this study, it was suggested that free BF_{3} reacts immediately with water to give HBF₃OH. The HBF₃OH can then react with water and HF to give HBF₄ and HBF₂(OH)₂. Purified KBF₃OH was prepared. Upon

Solvent Effects on BF ₃ -MEA Quartet					
Solvent	Chemical shift of BF ₃ -MEA (ppm)	$J_{B.F}(\mathrm{Hz})$			
d ₆ -acetone	- 150.39	16			
d ₆ -DMSO	-149.24	19			
d-methanol	-151.65	17			
d ₂ -ODCB	-151.60	-151.60 Not determined			

TABLE I

acidification and mixing with BF3 and HBF4, the solution had a conductivity and pH identical to aqueous BF3 which had been allowed to reach equilibrium (a process requiring several days).¹⁰ This can be taken as indirect evidence for the presence of BF3, HBF3OH, HBF4, and possibly even $HBF_2(OH)_2$. The overall reaction sequence would be:

> $BF_3 + H_2O \rightarrow HBF_3OH$ $HBF_3OH + H_2O \rightarrow HBF_2(OH)_2 + HF$ $HBF_{3}OH + HF \rightarrow HBF_{4} + H_{2}O$

Present fluorine-19 NMR data confirm the presence of BF_3 -MEA, HBF_4 , and HBF₃OH, but not HBF₂(OH)₂. It is possible that the hydrolysis of free BF_3 may be different from the hydrolysis of BF_3 -MEA.

To resolve this matter, the literature on the hydrolysis of HBF₄ was reviewed.^{9,11} It was suggested in these reports that HBF₄ is hydrolyzed in several steps, as follows:

> $HBF_4 + H_2O \rightarrow HBF_3OH + HF$ $HBF_{3}OH + H_{2}O \rightarrow HBF_{2}(OH)_{2} + HF$ $HBF_2(OH)_2 + H_2O \rightarrow HBF(OH)_3 + HF$ $HBF(OH)_3 \rightarrow B(OH)_3 + HF$

At equilibrium, there would be a mixture of HBF₄, HBF₃OH, HBF₂(OH)₂, $HBF(OH)_3$, $B(OH)_3$, and HF. Initially, the HBF_4 and HBF_3OH should be present and identifiable by fluorine-19 NMR. A fresh solution of 0.5% HBF₄ in D_2O shows the two peaks identified in Figure 2(a) as HBF₄ and HBF₃OH (pseudosinglet and quadruplet). After 5 days at room temperature, a new peak, 20.6 ppm downfield from the HBF₄, was observed (Fig. 3). This peak is probably caused by $HBF_2(OH)_2$ or $HBF(OH)_3$.

Chemical Shifts of Various BF ₃ Complexes					
Compound	Chemical Shift (ppm)	J_{B-F} (Hz)			
HBF ₃ OH in d ₆ -acetone	143.18	Not determined			
HBF ₃ OH in d ₂ -ODCB	-143.78	14			
BF ₃ -d-Methanol	-152.60	11			
BF ₃ -d ₆ -DMSO	-140.34	17			

TABLE II

CHEMICAL SHIFT (ppm)

Fig. 3. Hydrolysis of HBF₄ in D₂O-HBF₄ is arbitrarily assigned to 0 ppm.

Information From HBF₄ Peak

Several samples of commercially available epoxy prepolymers were found to contain BF_3 -MEA. The fluorine-19 NMR of each of these epoxies also showed the presence of HBF₄. Similarly, BF₃-MEA was obtained from different vendors, and each sample had varying amounts of HBF₄. Moreover, the chemical shift of the HBF₄ was seen to vary slightly, even though all spectra were obtained using deuterated acetone solvent. It is possible that some of the HBF₄ may be present as BF_{4} . In general, the chemical shift of an acid will change as it is titrated with a base. This phenomenon is most extensively documented for phosphoric acid and its phosphate anions $(H_2PO_4^-, HPO_4^{2-}, and PO_4^{3-})$. As phosphoric acid is titrated with NaOH, its ³¹P-NMR chemical shift changes.^{18,19} Thus, it was expected that HBF₄ and NaBF₄ would have different ¹⁹F chemical shifts as shown in Figure 4. Both an aqueous solution of HBF₄ and a solution of HBF₄ in 95% acetone/5% water were titrated with NaOH and ¹⁹F chemical shifts were recorded. The results are shown in Figure 5. Thus, the ¹⁹F-chemical shift of the HBF₄ can be used to measure the acidity of the sample. A comparison of different

Fig. 4. pH effect on HBF₄ spectrum in d₆-acetone.

 BF_3 -MEA samples and epoxy resins containing BF_3 -MEA is shown in Table III.

Also shown from the HBF₄ peak is the degree of hydrolysis of the BF₃-MEA based on the relative areas under the HBF₄ and BF₃-MEA peaks. Most commercially available BF₃-MEA samples had 5–10% HBF₄ as determined in this way. BF₃-MEA in epoxy resin samples were 30–60% hydrolyzed to HBF₄. One BF₃-MEA sample was kept at room temperature for 2 years, and the HBF₄ content went from 5% to 30%. Since all samples showed some degree of hydrolysis, it was decided to better characterize the hydrolysis.

Hydrolysis of BF₃-MEA at High Temperature

Since epoxy resins are typically cured at temperatures above 120°C, the effect of elevated temperatures on the hydrolysis of BF₃-MEA was investigated. Initially d_4 -ODCB was used as the solvent. Its boiling point is over 160°C, and it contains very little moisture.

A sample of BF₃-MEA initially containing 5% HBF₄ was dissolved in d₄-ODCB and placed in the NMR. The temperature of the sample was controlled by a variable temperature controller. The temperature controller was calibrated using a thermocouple placed in d₄-ODCB for temperatures ranging from 60°C to 100°C. A comparison of the fluorine-19 NMR spectra as the BF₃-MEA was heated stepwise from 30°C to 100°C is shown in Figures 6(a)-6(d). At 100°C (and 145°C) the BF₃-MEA peak disappears within 5 min, and only HBF₄ and HBF₃OH are seen. Since epoxy resins containing BF₃-MEA are typically cured for 2 h at higher temperatures (120-180°C), the

Sample	Chemical shift (ppm)
Commercial BF ₃ MEA samples	
Sample 1	-148.3
Sample 2	-148.9
Sample 3	148.9
Sample 4	-149.0
Sample 5	-149.8
BF ₃ MEA in epoxy resins	
Resin A	-149.7
Resin B	-150.3
BF ₃ -MEA mixed with	
Epoxide	-150.1
DDS	-149.8
Epoxide + DDS	-149.5

TABLE III Chemical Shift of BF₄-Singlet in Various Samples in d₆-Acetone^a

 $^{\circ}$ HBF₄ is at 148.7 ppm; NaBF₄ is at 151.1 ppm. The epoxide was bis (*N*,*N*-di(d,3-epoxypropy))-4-aminophenyl) methane. DDS is diaminodiphenylsulfone

 BF_3 -MEA must be completely hydrolyzed long before the cure is finished. Thus, BF_3 -MEA is not acting as a catalyst in these epoxy resin systems.

To distinguish between the effect of moisture content from temperature on BF_3 -MEA, the hydrolysis was studied in D_2O . At room temperature, the hydrolysis is very slow. After 24 h, the spectrum is almost identical to that seen in Figure 2(a). The only difference is that the peak caused by HBF₃OH (actually DBF₃OH or DBF₃OD) increased slightly in size. After 24 h, this peak accounts for 4.15% of the total fluorine spectrum as opposed to 3.34% when the BF_3 -MEA was first dissolved in the D_2O . After 28 days at room temperature, a new peak arises-at 21 ppm (Fig. 7). When BF₃-MEA is heated to 80°C in D_2O , the rate of hydrolysis increases. The HBF₄ peak increases in size and is shifted upfield by 1.6 ppm, and the 21 ppm peak broadens (Fig. 8) in the first 5 min. Over the next 3 h, the HBF₄ peak continues to increase in size along with the HBF₃OH(DBF₃OH) peak as the BF₃-MEA quartet decreases. The relative peak areas are shown in Table IV. A new peak at 21 ppm is seen after 1.5 h. It is most likely that the peak at 21 ppm is caused by HBF(OH)₃, and the peak at 16 ppm is caused by HBF₂(OH)₂. These compounds are expected to appear based on previous reports on HBF₄ hydrolysis.^{9,11} After 16 h at 80°C, the BF₃-MEA is completely hydrolyzed. Only HBF₄, HBF₃OH, and HBF(OH)₃ peaks are seen. It seems that hydrolysis at 80°C occurs slowly in water, but at 100°C or 145°C in d₄-ODCB the hydrolysis is quite rapid. Thus, temperature accelerates the hydrolysis of BF₃-MEA much more than large water concentration.

Epoxy resin prepolymer would be expected to contain at least as much moisture as d_4 -ODCB. Since the epoxies are cured at high temperatures, the BF₃-MEA is expected to be rapidly hydrolyzed. The rate of epoxy cure has been studied by Fourier transform infrared (FTIR) spectroscopy.²⁰ The results in this study show that epoxy resin is cured much slower than BF₃-MEA is hydrolyzed. Moreover, when HBF₄ is mixed with epoxy resin components in the absence of BF₃-MEA, the epoxy resin cure is accelerated considerably. Thus, it is concluded that BF₃-MEA is not a catalyst for epoxy resin cure. HBF₄ and/or its hydrolysis products act as the catalyst.

Fig. 6. Effect of elevated temperature on BF₃-MEA hydrolysis: (a) 30°C; (b) 60°C; (c) 80°C; (d) 100°C.

Fig. 6 (continued from the previous page.)

Fig. 7. Room temperature hydrolysis of BF_3 -MEA in D_2O . This is the spectrum after 28 days.

Fig. 8. High temperature hydrolysis of $BF_3\text{-}MEA$ in $D_2O.$ This is the spectrum after 10 min at 70°C.

Peak	t=0	$t = 10 \min$	t = 1.5 h	t = 3 h	<i>t</i> =16 h		
BF ₃ -MEA							
+ HBF_4	88.2	84.9	71.5	58.9	38.1ª		
HBF₃OH	10.5	14.2	24.9	34.2	53.5		
HBF(OH)	1.28	0.94	1.90	2.83	8.4		
HBF ₂ (OH) ₂	0	0	1.80	4.12	0		

TABLE IV Hydrolysis of BF₃-MEA in D₂O at 80°C

^a Only HBF₄ is present after 16 h.

References

1. M. Lidarik and M. Mach, Plaste Kautsch., 26, 20 (1979).

2. J. D. B. Smith and A. I. Bennett, Conference Proceedings IEEE Symposium on Electric Insulation, IEEE Service Center, Boston, 1980, p. 136.

3. I. Soos and J. Bisztriczky, Kautsch. Gummi Kunst., 34, 353 (1981).

4. N. C. Paul, P. J. Pearce, D. H. Richards, and D. Thompson, Adhesion, 3, (1979).

5. F. Greenspan, C. Johnston, and M. Reich, Mod. Plast., 37, 142 (1959).

6. P. Giusti and A. Pennacchi, Poliplasti, 23 (1966).

7. P. Nowak and M. Saure, Kunst., 54, 557 (1964).

8. H. S. Booth and D. R. Martin, Boron Trifluoride and Its Derivatives, Wiley, New York, 1949.

9. C. A. Wamser, J. Am. Chem. Soc., 70, 1209 (1948).

10. C. A. Wamser, J. Am. Chem. Soc., 73, 409 (1951).

11. S. Radosav Ijevic, V. Scepanovic, and D. Milojkovic, J. Fluorine Chem., 13, 465 (1979).

12. C. H. Dungan and J. R. VanWazer, Compilation of Reported F-19 NMR Chemical Shifts, Wiley-Interscience, New York, 1970.

13. L. Cavalli, Ann. Rep. NMR Spectry, 6B, 43 (1976).

14. R. K. Harris and B. E. Mann, *NMR and the Periodic Table*, Academic, New York, 1978, p. 98.

15. S. Brownstein, A. M. Eastham, and G. A. Latremouille, J. Phys. Chem., 67, 1028 (1963).

16. N. N. Greenwood, K. A. Hooton, and J. Walker, J. Chem. Soc. (London), A, 21 (1966).

17. R. D. Chambers, H. C. Clark, L. W. Reeves, and C. J. Willis, Can. J. Chem., 39, 258 (1961).

18. R. E. Smith and P. L. Luisi, Helv. Chim. Acta, 63, 2302 (1980).

19. H. Fujii, T. Kawai, H. Nishikawa, and G. Ebert, Cell. Polym. Sci., 260, 697 (1982).

20. R. E. Smith, F. N. Larsen, and C. L. Long, J. Appl. Polym. Sci., to appear.

Received November 1, 1983

Accepted February 9, 1984